Abstract

Using 3-hydroxy-2-(4-methylphenyl)-4H-chromen-4-one (HMC) as a complexing agent in an acidic medium, a simple, quick, highly sensitive, and selective approach for the extractive spectrophotometric measurement of micro quantities of niobium (V) is developed. The yellowish 1:3 complex can be extracted 100 % in dichloromethane (DCM), attaining maximum absorbance in the wavelength range 388-407 nm. At 400 nm, the selected wavelength, the approach follows a linear calibration curve up to 2.2 g Nb (V) ml-1 and 0.395-1.78 ppm Nb (V) as identified from the Ringbom Plot with molar absorptivity, specific absorptivity, and Sandell's sensitivity of 4.926 × 104 l mol-1 cm-1, 0.5302 ml g-1 cm-1 and 0.0019 µg Nb cm-2, respectively. With a correlation coefficient of 0.9994, the linear regression equation is Y = 0.514 X + 0.016. The method's detection limit is 0.0698 µg ml-1. The presented determination of pentavalent niobium is unaffected by 33 cations and 22 anions/complexing agents. The approach has good reproducibility and can be used to determine niobium in a satisfactory manner. The analytical study has been correlated well with the theoretical approach of Density Functional Theory (DFT) for quantum chemical calculations. DFT effectively helped determine and interpret the chemical behavior of the obtained Nb(V)-HMC complex, explaining its stability and reactivity pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.