Abstract
Doxorubicin (DOX) is the most effective antineoplastic agent, destroys cancer cells by interrupting cellular function. However, the serious side effects on the heart limits its utility. To curb these unwanted side effects, nutritionist recommend antioxidants use along with DOX while chemotherapy. But it was not supported by various oncologists as it can alter the toxicity of DOX towards cancer cells. Therefore, here we explored the in silico pharmacokinetics and combination effect of DOX and antioxidants on topoisomerases-II (Top-II) and cyclophilin D (Cyp-D) therapeutic targets involved in cancer proliferation and post-myocardial infarction, respectively. The molecular docking study was conducted on target proteins and DOX including most prescribed antioxidants (melatonin, N-acetylcysteine (NAC), glutathione (GSH), β-carotene and vitamin C). GSH showed effective binding potential for Top-II and Cyp-D active sites, but other considered antioxidants possess low binding affinity. The highest docked conformations were subjected to molecular dynamics (MD) simulations to understand conformer stability of DOX and GSH with Cyp-D and Top-II for 100 ns. The results revealed that ligands pose at Top-II active sites where DOX showed strong binding affinity to DNA binding pocket and GSH to a buried site. The computational data summarised and proposed the GSH and DOX combination as antagonist effects on Top-II. Conversely, the binding compactness of GSH improved due to surface fit at the active pocket of Cyp-D and completely blocking DOX binding affinity, suppress adverse reactions of post-myocardial infarction. Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.