Abstract

Due to the energy crisis, development of bifunctional electrocatalysts for both oxygen evolution and reduction reactions is highly demanding. In this study, we have systematically investigated the bifunctional activity of metal (Co/Rh/Ir) and N co-doped graphene systems with varying N-dopant concentrations (TM-N x @G, x = 0, 2, 4) using first-principles calculations. Charge transfer from the metal sites to the adsorbed intermediates and the adsorption free energy of the intermediates play important roles to help understand the potential-determining step and overpotential values for oxygen evolution reaction (OER)/oxygen reduction reaction (ORR). A dual volcano plot for all the systems using a common descriptor ΔG OH* has been constructed. We find that the systems having ΔG OH* values in the range of 0.40-0.70 eV can act as bifunctional electrocatalysts. Our study not only highlights the importance of metal and non-metal co-doped graphene as bifunctional catalysts but also can serve as a promising strategy for the design of efficient OER/ORR electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.