Abstract
Chromanes with high bioactivity play an important role in nature, and cyclization reactions of cyclopropanes with sulfonium ylides to form chromane skeletons have attracted great attention of scientists. The mechanism as well as origins of regioselectivity and stereoselectivity for the ring-opening/cyclization reactions between cyclohexane-1,3-dione-2-spirocyclopropanes and stabilized sulfonium ylides in CH2Cl2 were investigated by using the density functional theory (DFT) M06-2X/6-311+G(d,p)//M06-2X/6-31G(d,p) method combined with the SMD model. The calculated results revealed that the reaction process involved two key steps: the ring-opening step and the cyclization step, with the former being the rate-determining and stereoselectivity-determining step. The regioselectivity of the ring-opening step of spirocyclopropane indicated that the tertiary carbon was more preferential than the secondary one when sulfonium ylide attacked spirocyclopropane. The theoretical results confirmed that the stereoselectivity of the reaction to form the trans-isomer product is more favorable than the cis-isomer, and the calculated trans/cis ratio is in accordance with the experiment. Moreover, the conceptual density functional theory reactivity indices suggest that the electronic effect controls the regioselectivity. What is more, the stereoselectivity analyzed by weak non-covalent interaction also shows the importance of electronic effect. Graphical Abstract.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.