Abstract

B3LYP calculations in conjunction with natural bond orbital population analysis have been performed for a previtamin D model and corresponding transition structures for the [1,7]-hydrogen migration. In addition the 19,19-difluoro, 19-methoxy and 19-fluoro substituted analogs were investigated. The calculated activation barriers decrease in the following order: CHF2>CH3>CH2OCH3 (24.8, 23.5 and 20.1 kcal/mol). This is in qualitative agreement with experiments. It has been suggested that a decrease of the barrier by a 19-methoxy substituent and its increase by a 19,19-difluoro substituent are phenomena of different origin. In the case of 19-methoxy substitution, the effect is due to the charge redistribution in the triene system and the decrease of the C(19)–H bond energy. The effect of two fluorine substituents at C-19 on the activation barrier is suggested to originate from the combination and balance of several factors: electrostatic repulsion between the negative fluorine atom and the π-electron cloud over the conjugated system, an increase of the HOMO–LUMO gap, and geminal difluoro substitution affecting C–F and C–C bond energies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call