Abstract

The effect of the increase in the alkyl chain length of cation on the properties of deep eutectic solvents based on ethylene glycol has been investigated employing classical molecular dynamics simulations. The change in the structural and dynamic properties in both the bulk and liquid–vapor interface is explored through various analyses. The interaction between the anion and the ethylene glycol increases with an increase in the alkyl chain length of the cation, as observed in the increase of the lifetime of the hydrogen bond formed between the two. The terminal carbon atoms are found to be closer to each other when the cation changes from tetraethylammonium to tetrabutylammonium. The cations are located closer to the interface, and the association of the alkyl chains becomes more significant with increased alkyl chain length, decreasing the surface tension values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.