Abstract

Automated scientific discovery, a topic in artificial intelligence has mainly been used to generate scientific insight from data. Our work follows the knowledge-driven discovery approach and introduces the use of category theory as the foundation for modeling diverse engineering fields represented with combinatorial representation. We show how category theory provides support for all stages of the discovery process starting from modeling the engineering knowledge. We demonstrate the use of the approach to rediscover previous discoveries in mechanics and discover new devices, some of which need to be realized to be appreciated. Category theory allows expanding the process to disciplines not modeled with combinatorial representations. We intend to demonstrate this in future studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.