Abstract

Phosphine is now well-established as a biosignature, which has risen to prominence with its recent tentative detection on Venus. To follow up this discovery and related future exoplanet biosignature detections, it is important to spectroscopically detect the presence of phosphorus-bearing atmospheric molecules that could be involved in the chemical networks producing, destroying or reacting with phosphine. We start by enumerating phosphorus-bearing molecules (P-molecules) that could potentially be detected spectroscopically in planetary atmospheres and collecting all available spectral data. Gaseous P-molecules are rare, with speciation information scarce. Very few molecules have high accuracy spectral data from experiment or theory; instead, the best current spectral data was obtained using a high-throughput computational algorithm, RASCALL, relying on functional group theory to efficiently produce approximate spectral data for arbitrary molecules based on their component functional groups. Here, we present a high-throughput approach utilizing established computational quantum chemistry methods (CQC) to produce a database of approximate infrared spectra for 958 P-molecules. These data are of interest for astronomy and astrochemistry (importantly identifying potential ambiguities in molecular assignments), improving RASCALL's underlying data, big data spectral analysis and future machine learning applications. However, this data will probably not be sufficiently accurate for secure experimental detections of specific molecules within complex gaseous mixtures in laboratory or astronomy settings. We chose the strongly performing harmonic ωB97X-D/def2-SVPD model chemistry for all molecules and test the more sophisticated and time-consuming GVPT2 anharmonic model chemistry for 250 smaller molecules. Limitations to our automated approach, particularly for the less robust GVPT2 method, are considered along with pathways to future improvements. Our CQC calculations significantly improve on existing RASCALL data by providing quantitative intensities, new data in the fingerprint region (crucial for molecular identification) and higher frequency regions (overtones, combination bands), and improved data for fundamental transitions based on the specific chemical environment. As the spectroscopy of most P-molecules have never been studied outside RASCALL and this approach, the new data in this paper is the most accurate spectral data available for most P-molecules and represent a significant advance in the understanding of the spectroscopic behavior of these molecules.

Highlights

  • Phosphine (PH3) is currently a strong biosignature candidate as there are few, if any, non-biological formation pathways of phosphine for terrestrial planets (Sousa-Silva et al, 2020)

  • RASCALL places all C-H stretches at a particular frequency value, whereas the scaled harmonic calculations for this functional group result in frequencies that are spread over a larger frequency window

  • The key new data presented in this paper is the calculated infrared spectra of 958 phosphorus-bearing molecules (Pmolecules), which represents the best available data for almost all of these molecules

Read more

Summary

Introduction

Phosphine (PH3) is currently a strong biosignature candidate as there are few, if any, non-biological formation pathways of phosphine for terrestrial planets (Sousa-Silva et al, 2020). To investigate the presence and formation mechanisms of phosphine on Venus, and to interpret future observations of planetary atmospheres, we must improve our understanding of the chemical networks that may include phosphine. A crucial tool in this process is the ability to detect phosphorus-bearing molecules (P-molecules) that can provide clues to the formation pathways of phosphine, and provide insight into the mechanisms of a possible phosphine-producing biosphere. A more in-depth understanding of planetary environments through the interpretation of both archival and future observational data, will require spectral data on all relevant atmospheric molecules. To follow-up potential phosphine detections in Venus and exoplanets will require in-depth analyses of the wider context of these atmospheres, which in turn relies on our ability to detect the P-molecules that participate in the chemical networks where phosphine is present. Discussions and explorations in this paper pioneer key processes and considerations by which an initial biosignature detection can be followed up, and as a by-product identify a wide variety of opportunities and challenges in the field of spectral detection of unknown chemistry (whether geochemical, photochemical or biochemical) that will be crucial for upcoming explorations of exoplanetary atmospheres

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call