Abstract

BackgroundSwitchgrass is a prime target for biofuel production from inedible plant parts and has been the subject of numerous investigations in recent years. Yet, one of the main obstacles to effective biofuel production remains to be the major problem of recalcitrance. Recalcitrance emerges in part from the 3-D structure of lignin as a polymer in the secondary cell wall. Lignin limits accessibility of the sugars in the cellulose and hemicellulose polymers to enzymes and ultimately decreases ethanol yield. Monolignols, the building blocks of lignin polymers, are synthesized in the cytosol and translocated to the plant cell wall, where they undergo polymerization. The biosynthetic pathway leading to monolignols in switchgrass is not completely known, and difficulties associated with in vivo measurements of these intermediates pose a challenge for a true understanding of the functioning of the pathway.ResultsIn this study, a systems biological modeling approach is used to address this challenge and to elucidate the structure and regulation of the lignin pathway through a computational characterization of alternate candidate topologies. The analysis is based on experimental data characterizing stem and tiller tissue of four transgenic lines (knock-downs of genes coding for key enzymes in the pathway) as well as wild-type switchgrass plants. These data consist of the observed content and composition of monolignols. The possibility of a G-lignin specific metabolic channel associated with the production and degradation of coniferaldehyde is examined, and the results support previous findings from another plant species. The computational analysis suggests regulatory mechanisms of product inhibition and enzyme competition, which are well known in biochemistry, but so far had not been reported in switchgrass. By including these mechanisms, the pathway model is able to represent all observations.ConclusionsThe results show that the presence of the coniferaldehyde channel is necessary and that product inhibition and competition over cinnamoyl-CoA-reductase (CCR1) are essential for matching the model to observed increases in H-lignin levels in 4-coumarate:CoA-ligase (4CL) knockdowns. Moreover, competition for 4-coumarate:CoA-ligase (4CL) is essential for matching the model to observed increases in the pathway metabolites in caffeic acid O-methyltransferase (COMT) knockdowns. As far as possible, the model was validated with independent data.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-015-0334-8) contains supplementary material, which is available to authorized users.

Highlights

  • Switchgrass is a prime target for biofuel production from inedible plant parts and has been the subject of numerous investigations in recent years

  • We begin by assessing the pathway structure in switchgrass as it is alleged in the current literature

  • 4CL inhibition is added as a potential explanation for the accumulation of 4CL substrates, along with a simultaneous decrease in coniferaldehyde in the caffeic acid O-methyltransferase (COMT) knockdown

Read more

Summary

Introduction

Switchgrass is a prime target for biofuel production from inedible plant parts and has been the subject of numerous investigations in recent years. This resistance against decomposition and digestion is known as recalcitrance It is arguably the most important barrier to industrializing second-generation biofuels, and in particular the production of ethanol from inedible plant parts as sustainable and affordable biofuels, because recalcitrance necessitates additional treatment steps, such as hot acid or ammonia baths, to loosen the lignin structure [3,4,5]. These steps require time and expense and reduce feasibility and cost effectiveness. Recalcitrance affects forage digestibility, and progress toward reducing recalcitrance could have a significant impact on the cattle and sheep industry [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call