Abstract

BackgroundPost-genome era brings about diverse categories of omics data. Inference and analysis of genetic regulatory networks act prominently in extracting inherent mechanisms, discovering and interpreting the related biological nature and living principles beneath mazy phenomena, and eventually promoting the well-beings of humankind.ResultsA supervised combinatorial-optimization pattern based on information and signal-processing theories is introduced into the inference and analysis of genetic regulatory networks. An associativity measure is proposed to define the regulatory strength/connectivity, and a phase-shift metric determines regulatory directions among components of the reconstructed networks. Thus, it solves the undirected regulatory problems arising from most of current linear/nonlinear relevance methods. In case of computational and topological redundancy, we constrain the classified group size of pair candidates within a multiobjective combinatorial optimization (MOCO) pattern.ConclusionsWe testify the proposed approach on two real-world microarray datasets of different statistical characteristics. Thus, we reveal the inherent design mechanisms for genetic networks by quantitative means, facilitating further theoretic analysis and experimental design with diverse research purposes. Qualitative comparisons with other methods and certain related focuses needing further work are illustrated within the discussion section.

Highlights

  • Post-genome era brings about diverse categories of omics data

  • We propose an integrative supervised learning method for the inference of time-delayed cell cycle regulatory mechanism based on information and signal processing theories

  • Analysis on the Saccharomyces cerevisiae cell cycle microarray dataset The first Saccharomyces cerevisiae cell cycle microarray dataset was measured through the regulatory responses under the elutriation treatment, available at the Stanford Microarray Database

Read more

Summary

Introduction

Post-genome era brings about diverse categories of omics data. Inference and analysis of genetic regulatory networks act prominently in extracting inherent mechanisms, discovering and interpreting the related biological nature and living principles beneath mazy phenomena, and eventually promoting the well-beings of humankind. Inference of gene regulatory networks or maps for those intercellular processes plays significant roles in the further comprehension of underlying regulatory mechanisms Reconstructing such biological regulatory networks directly from gene profile datasets measured at different cell phases, types and even species becomes one of the foremost research topics recently. While during genetic transcriptional and translational processes, real-world regulatory maps may undergo various perturbations from intercellular and intracellular signals and undiscovered factors. From this perspective, a single modelling mode may not be sufficient to characterize all kinds of possible structures of these networks, or even crucial ones for specific analysis purposes. The problems above solicit flexible mechanism designs to improve the present rigid methods for network inference

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call