Abstract

Emotions are multifaceted phenomena affecting mind, body, and behavior. Previous studies sought to link particular emotion categories (e.g., fear) or dimensions (e.g., valence) to specific brain substrates but generally found distributed and overlapping activation patterns across various emotions. In contrast, distributed patterns accord with multi-componential theories whereby emotions emerge from appraisal processes triggered by current events, combined with motivational, expressive, and physiological mechanisms orchestrating behavioral responses. According to this framework, components are recruited in parallel and dynamically synchronized during emotion episodes. Here, we use functional MRI (fMRI) to investigate brain-wide systems engaged by theoretically defined components and measure their synchronization during an interactive emotion-eliciting video game. We show that each emotion component recruits large-scale cortico-subcortical networks, and that moments of dynamic synchronization between components selectively engage basal ganglia, sensory-motor structures, and midline brain areas. These neural results support theoretical accounts grounding emotions onto embodied and action-oriented functions triggered by synchronized component processes.

Highlights

  • Emotions are pervasive phenomena that promote adaptive responses to behaviorally relevant events

  • Across different levels corresponding to our Appraisal manipulations, they could encounter one of 3 types of “monsters” that produced different outcomes when touched: (i) good monsters yielded 10 points to the participant, (ii) neutral monsters yielded no points, and (iii) bad monsters caused a loss of 100 points

  • We addressed these limitations by using an emotion-eliciting video game paradigm, combined with both model-based and data-driven analysis of functional MRI (fMRI) that incorporated theorydriven parameters

Read more

Summary

Introduction

Emotions are pervasive phenomena that promote adaptive responses to behaviorally relevant events. The functional and neuroanatomical organization of emotion is still unresolved. What are the essential neural circuits coordinating the complex, multiple, and often abrupt changes in both mental and bodily states that are characteristically associated with emotion? Do they rely on specialized modules or distributed systems in the brain, and which are these? Such questions have been hotly debated in past decades [1]. Affective neuroscience approaches have generally focused on theoretical models postulating the existence of distinct emotion categories (e.g., fear, joy) or dichotomous dimensions (e.g., valence, arousal). Brain networks of emotions in sync the Neurovault database (https://identifiers.org/ neurovault.collection:8740)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.