Abstract
In this pilot study, we evaluated the potential of computational image analysis of optical coherence tomography (OCT) data to determine the prognosis of patients with diabetic macular edema (DME). Spectral-domain OCT scans with fully automated retinal layer segmentation and segmentation of intraretinal cystoid fluid (IRC) and subretinal fluid of 629 patients receiving anti-vascular endothelial growth factor therapy for DME in a randomized prospective clinical trial were analyzed. The results were used to define 312 potentially predictive features at three timepoints (baseline, weeks 12 and 24) for best-corrected visual acuity (BCVA) at baseline and after one year used in a random forest prediction path. Preliminarily, IRC in the outer nuclear layer in the 3-mm area around the fovea seemed to have the greatest predictive value for BCVA at baseline, and IRC and the total retinal thickness in the 3-mm area at weeks 12 and 24 for BCVA after one year. The overall model accuracy was R2=0.21/0.23 (p<0.001). The outcomes of this pilot analysis highlight the great potential of the proposed machine-learning approach for large-scale image data analysis in DME and other retinal diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.