Abstract

Alternative splicing is a vital process for regulating gene expression and promoting proteomic diversity. It plays a key role in tissue-specific expressed genes. This specificity is mainly regulated by splicing factors that bind to specific sequences called splicing regulatory elements (SREs). Here, we report a genome-wide analysis to study alternative splicing on multiple tissues, including brain, heart, liver, and muscle. We propose a pipeline to identify differential exons across tissues and hence tissue-specific SREs. In our pipeline, we utilize the DEXSeq package along with our previously reported algorithms. Utilizing the publicly available RNA-Seq data set from the Human BodyMap project, we identified 28,100 differentially used exons across the four tissues. We identified tissue-specific exonic splicing enhancers that overlap with various previously published experimental and computational databases. A complicated exonic enhancer regulatory network was revealed, where multiple exonic enhancers were found across multiple tissues while some were found only in specific tissues. Putative combinatorial exonic enhancers and silencers were discovered as well, which may be responsible for exon inclusion or exclusion across tissues. Some of the exonic enhancers are found to be co-occurring with multiple exonic silencers and vice versa, which demonstrates a complicated relationship between tissue-specific exonic enhancers and silencers.

Highlights

  • Alternative splicing (AS) is an essential cellular process in eukaryotes that pre-mRNA usually undergoes to produce multiple mRNA isoforms of the same gene with likely different functions [1]

  • This specificity is mainly regulated by splicing factors that bind to specific sequences called splicing regulatory elements (SREs)

  • We applied our algorithms, GenSRE [21] and CoSREM [31], to identify both individual and combinatorial exonic regulatory elements responsible for exons that exist in one tissue but not in other tissues

Read more

Summary

Introduction

Alternative splicing (AS) is an essential cellular process in eukaryotes that pre-mRNA usually undergoes to produce multiple mRNA isoforms of the same gene with likely different functions [1]. In a typical splicing process, introns within the pre-mRNA are removed, and the exons are joined together to form the mature mRNA [2, 3]. AS supports the joining of different combinations of exons; said another way, what sequence constitutes an exon is readily redefined. Different proteins are produced from the same gene. Recent studies show that AS occurs in more than 95% of human genes [3, 4].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.