Abstract

Traditional cancer treatment approaches are often hindered by the presence of toxic side effects and the high rate of relapse observed in treated organs. In contrast, novel immunotherapeutic strategies targeting immune checkpoint inhibitors, particularly PD-1, have demonstrated promising results with minimal adverse effects. However, the emergence of immunotherapeutic-resistant tumors, predominantly caused by intrinsic mutations, poses a significant obstacle to successful treatment outcomes. Consequently, the primary objective of this study was to screen for the most detrimental missense mutations in the PD-1 gene associated with immunotherapeutic resistance. To achieve this aim, a comprehensive screening process utilizing 20 web servers, incorporating both sequence- and structure-based methodologies, was undertaken. Through meticulous analysis and mutual disease association sorting, four specific missense mutations were successfully identified. These mutations, namely, R38C, D61V, R94C, and D117V, emerged as the leading contributors to genetic cancer progression and immunotherapeutic resistance against PD-1 blockers. The findings presented in this study are supported by multiple lines of evidence. A thorough examination of protein topology, structural alignment, docking interactions with PD-L1, and protein flexibility collectively confirmed the pathogenic nature of these sorted mutations. By considering these various aspects, we have gained a comprehensive understanding of the underlying mechanisms driving immunotherapeutic resistance. In conclusion, the comprehensive screening process undertaken in this study has successfully identified R38C, D61V, R94C, and D117V as the primary mutations contributing to genetic cancer progression and immunotherapeutic resistance against PD-1 blockers. The integration of protein topology analysis, structural alignment, docking studies with PD-L1, and assessment of protein flexibility have collectively provided robust evidence to support the pathogenic significance of these mutations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call