Abstract

Reactive flow at pore scale in random porous media is considered at low Pecklet and Damkoler numbers, and computational identification of unknown adsorption and desorption rates is discussed. The reactive transport is governed by steady state Stokes equations, coupled with convection-diffusion equation for species transport. The surface reactions, namely adsorption and desorption, are accounted via Robin boundary condition. Finite element approximation in space and implicit time discretization are exploited. Measured concentration of the specie at the outlet of the domain is provided to carry out the identification procedure. The impact of the noise in the measurement on the parameter identification procedure is studied. Stochastic parameter identification approach is adopted. Computational results demonstrating the potential of the considered parameter identification approaches are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.