Abstract

Here, we report a density functional theory (DFT)-based high-throughput screening method to successfully identify a type of alloy nanoclusters as the electrocatalyst for hydrogen evolution reaction (HER). Totally 7924 candidates of Cu-based alloy clusters of Cu55-nMn (M = Co, Ni, Ru, and Rh) are optimized and evaluated to screening for the promising catalysts. By comparing different structural patterns, Cu-based alloy clusters prefer the core–shell structures with the dopant metal in the core and Cu as the shell atoms. Generally speaking, the HER performance of the Cu-based nanoclusters can be significantly improved by doping transition metals, and the active sites are the bridge sites and three-fold sites on the outer-shell Cu atoms. Considering the structural stability and the electrochemical activity, core–shell CuNi alloy clusters are suggested to be the superior electrocatalyst for hydrogen evolution. A descriptor composing of surface charge is proposed to efficiently evaluate the HER activity of the alloy clusters supported by the DFT calculations and machine-learning techniques. Our screening strategy could accelerate the pace of discovery for promising HER electrocatalysts using metal alloy nanoclusters.

Highlights

Read more

Summary

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call