Abstract

Computational ghost imaging is a structured-illumination active imager coupled with a single-pixel detector that has potential applications in remote sensing. Here we report on an architecture that acquires the two-dimensional spatial Fourier transform of the target object (which can be inverted to obtain a conventional image). We determine its image signature, resolution, and signal-to-noise ratio in the presence of practical constraints such as atmospheric turbulence, background radiation, and photodetector noise. We consider a bistatic imaging geometry and quantify the resolution impact of nonuniform Kolmogorov-spectrum turbulence along the propagation paths. We show that, in some cases, short-exposure intensity averaging can mitigate atmospheric-turbulence-induced resolution loss. Our analysis reveals some key performance differences between computational ghost imaging and conventional active imaging, and identifies scenarios in which theory predicts that the former will perform better than the latter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.