Abstract

The economic viability of the biofuel industry has been plagued in part by the incomplete valorization of lignin, which is currently being burned for process heat. One of the roadblocks to effectively converting lignin into usable fuels and chemicals is that the structure of lignin has yet to be entirely understood owing to its polydispersity, complexity, and hyper-branched topology. Libraries of structural representations of lignin accounting for these facets have recently been proposed for wheatstraw, an herbaceous biomass, based on a stochastic generation method that creates lignin molecules that collectively conform to properties measured experimentally. We have extended this stochastic method to accommodate more complexity and any type of biomass, i.e., softwood, hardwood, or herbaceous. The unique mechanistic details for several of the new lignin bond types are essential in deciding rules for bond formation in the algorithm. Further, we present two successful methods of decreasing the degrees of fre...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.