Abstract

The present study treats numerically the performance of a straight-bladed, vertical axis, Darieus wind turbine. A two-dimensional (2D), Unsteady Reynolds-averaged Navier–Stokes (URANS) simulations were performed out by the solver ANSYS/FLUENT using the sliding mesh method. Four turbulence models, namely the one-equation Spalart– Almaras (SA) model, the two-equation Shear Stress Transport (SST) k-ω, the Transitional Shear Stress Transport (TSST), and the realizable k-ϵ models, with low Reynolds number capabilities, were tested.The dependency of the power curve upon the torque coefficient and the Tip Speed Ratio (TSR) was evaluated under identical conditions to previously published experimental studies. The results suggest that the realizable k-ϵ model outperformed other turbulence models and matched better with the experimental data. Further numerical investigations were performed to determine the conditions for an optimal performance of the VAWT in question.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.