Abstract

An electronic representation of Sulzer’s Mellapak N250Y structured packing was generated by subjecting a physical packing element to CT scan. The resulting file was imported into a three-dimensional imaging program and then copied, translated, and rotated to create a stack of three packing elements. This stack was then inserted into an open-ended cylindrical surface to approximate a packed column. The resulting three-dimensional image file was imported into the Star-CCM+ CFD software and meshed using the Surface Remesher and Polygonal Volume Meshing routines to create a high-quality volume mesh. The mesh was then utilized to produce a series of CFD simulations. Flow rates were chosen so that the velocities studied would match those commonly employed in the vapor phase of industrial distillation columns. The pressure drop across the packing was monitored during iterative computations, and its rate of change was used to judge convergence. The simulation predictions were shown to be in good agreement with experiments that measured pressure drop in an analogous geometry and flow range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call