Abstract

The toxicity and severity of particulates and toxic gasses resulting from industrial activities on human health and environment is a major concern worldwide. Venturi scrubber is widely employed to abate the pollutant concentration because of their high removal efficiency. For an accurate and efficient design of venturi scrubber, the complex fluid dynamic behaviour inside the venturi scrubber needs to be understood. The present multiphase Euler-Lagrange CFD study successfully provides a computational model to predict pressure drop and collection efficiency by employing the commercial CFD package FLUENT. Throat gas velocities of 50, 70 and 100 m/s are simulated. Dust particles TiO2 having a diameter of 1 μm and density of 4.23 g/cm3 are used in this simulation work. The gas flow field is resolved in the Eulerian frame of reference while dust and droplet are treated in the Lagrangian framework. The turbulence of is modelled using realisable k-ε model, droplet secondary breakup through TAB model and drag coefficient is modelled through dynamic and spherical drag laws. Results of pressure drop and collection efficiency predicted by this model are found to be in good agreement with cited experimental and simulated values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.