Abstract

ObjectivesThis study aimed to simulate blood flow stagnation using computational fluid dynamics and to clarify the optimal design of segmental artery reattachment for thoracoabdominal aortic repair. MethodsBlood flow stagnation, defined by low-velocity volume or area of the segmental artery, was simulated by a 3-dimensional model emulating the systolic phase. Four groups were evaluated: direct anastomosis, graft interposition, loop-graft, and end graft. Based on contemporary clinical studies, direct anastomosis can provide a superior patency rate than other reattachment methods. We hypothesized that stagnation of the blood flow is negatively associated with patency rates. Over time, velocity changes were evaluated. ResultsThe direct anastomosis method led to the least blood flow stagnation, whilst the end-graft reattachment method resulted in worse blood flow stagnation. The loop-graft method was comparatively during late systole, which was also influenced by configuration of the side branch. Graft interposition using 20 mm showed a low-velocity area in the distal part of the side graft. When comparing length and diameter of an interposed graft, shorter and smaller branches resulted in less blood flow stagnation. ConclusionsIn our simulation, direct anastomosis of the segmental artery resulted in the most efficient design in terms of blood flow stagnation. A shorter (<20 mm) and smaller (<10 mm) branch should be used for graft interposition. Loop-graft is an attractive alternative to direct anastomosis; however, its blood flow pattern can be influenced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call