Abstract

A comprehensive, multi-physics, multi-dimensional model has been developed to simulate solid oxide fuel cells (SOFCs). The model fully couples electrochemical kinetics with multi-dimensional gas dynamics and multi-component transport of species. The developed model is a full cell model, including all components of SOFC, flow channels, active and inactive gas diffusion electrodes and electrolyte. The present model is implemented in a commercially available CFD software, Fluent, using its customization ability via User Defined Functions (UDF). It is able to predict conventional I-V curve (polarization curve) in addition to details of internal processes, such as flow field, species concentrations, potential and current distributions throughout the cell. It is found that mass transfer limitation plays an important role in SOFC performance, especially under high current density operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.