Abstract

The palm fruit biomass is introduced into the pyrolysis reactor bed and the transport equations for heat, mass and momentum transfer are solved using computational fluid dynamics (CFD) technique. The Eulerian-Eulerian approach is employed to model fluidizing behavior of the sand for an externally heated reactor prior to the introduction of the biomass. The particle motion in the reactor is computed using the drag laws which depend on the local volume fraction of each phase. Heat transfer from the fluidized bed to the biomass particles together with the pyrolysis reactions were simulated by Fluent CFD code through user-defined function (UDF). Spontaneous production of pyrolysis oil, char and non-condensable gases (NCG) confirm the observation widely reported in literature. The computer model can potentially be used to assess other candidate biomass sources also to assist design of optimized pyrolysis reactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.