Abstract

Drilled shafts are cylindrical, cast-in-place concrete deep foundation elements. During construction, anomalies in drilled shafts can occur due to the kinematics of concrete, flowing radially from the center of the shaft to the concrete cover region at the peripheral edge. This radial component of concrete flow develops veins or creases of poorly cemented or high water-cement ratio material, as the concrete flows around the reinforcement cage of rebars and ties, jeopardizing the shaft integrity. This manuscript presents a three-dimensional computational fluid dynamics (CFD) model of the non-Newtonian concrete flow in drilled shaft construction developed using the finite volume method with interface tracking based on the volume of fluid (VOF) method. The non-Newtonian behavior of the concrete is represented via the Carreau constitutive model. The model results are encouraging as the flow obtained from the simulations shows patterns of both horizontal and vertical creases in the concrete cover region, consistent with previously reported field and laboratory experiments. Moreover, the flow exhibits the concrete head differential developed between the inside and the outside of the reinforcement cage, as exhibited in the physical experiments. This head differential induces the radial component of the concrete flow responsible for the creases that develop in the concrete cover region. Results show that the head differential depends on the flowability of the concrete, consistent with field observations. Less viscous concrete tends to reduce the head differential and the formation of creases of poorly cemented material. The model is unique, making use of state-of-the-art numerical techniques and demonstrating the capability of CFD to model industrially relevant concrete flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call