Abstract

A three-dimensional CFD (computational fluid dynamics) steady-state model was established to simulate biomass gasification in a circulating fluidized-bed (CFB) reactor. The standard k–ε turbulence model was coupled with the kinetic theory of granular flow to simulate the hydrodynamics in the gasifier. The kinetics of homogeneous and heterogeneous reactions were studied and integrated with the equations of continuity, motion, and energy to describe the distributions of velocity, temperature, and concentration. The simulation results were compared to experimental data. The impacts of turbulence models, radiation model, water–gas shift (WGS) reaction, and equivalence ratio (ER) were investigated to present a reliable understanding of biomass gasification in a CFB reactor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.