Abstract

This paper presents the optimization of a flow injection analysis (FIA) biosensor with respect to its design and operational parameters such as flow cell geometry, microfluidic channel dimensions, and flow rate. Since it is time consuming and costly to investigate the effect of each factor on the biosensor performance by building it, computational fluid dynamics (CFD) theory is presented as a great tool for finding optimal parameter values. This modeling approach has a high potential in the design of high accuracy FIA-biosensors, regardless of the chosen enzyme substrate system. As an example the optimal design for a glucose/glucose oxidase FIA biosensor is calculated with the CFD theory

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call