Abstract

This work presents a straightforward computational method to estimate the rotational diffusion coefficient (Dr) of cells and particles of various sizes using the continuum fluid mechanics theory. We calculate the torque (Γ) for cells and particles immersed in fluids to find the mobility coefficient μ and then obtain the Dr by substituting Γ in the Einstein relation. Geometries are constructed using triangular mesh, and the model is solved with computational fluid dynamics techniques. This method is less intensive and more efficient than the widely used models. We simulate eight different particle geometries and compare the results with previous literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.