Abstract
This study presents the predicted hydrodynamic characteristics of different rudder plane configurations on the stern of a full-scale submarine in deep water, which are obtained using the Reynolds-Averaged Navier–Stokes method in Ansys Fluent Solver. First, the results obtained for the X-rudder plane configuration are verified according to previous numerical and experimental results in order to assess the accuracy of the simulation procedure. The X-rudder plane, Y-rudder plane, and Cross-rudder plane configurations in deep water with deflection angles ranging from −21 degrees to +21 degrees are then simulated. Next, the hydrodynamic forces and moments of the Cross-plane, X-plane, and Y-plane rudder configurations obtained through simulation are analyzed using Taylor’s expansion to estimate the hydrodynamic coefficients. The obtained results demonstrate that the X-force of the X-plane rudder configuration is larger than the corresponding forces acting on the Cross-plane rudder and Y-plane rudder configurations. Meanwhile, the Y-force and Z-force of the X-plane rudder configuration are significantly greater than the corresponding forces of the left configurations. The same tendency can be seen in the moment of the X-plane rudder about the y- and z-axes. However, the roll moment induced by the Y-plane and Cross-plane rudder configurations is significantly larger than that under the X-plane rudder configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.