Abstract

The aim of this study was to demonstrate quantitatively and qualitatively the hemodynamic changes in abdominal aortic aneurysms (AAA) after stent-graft placement based on multidetector CT angiography (MDCT-A) datasets using the possibilities of computational fluid dynamics (CFD). Eleven patients with AAA and one patient with left-side common iliac aneurysm undergoing MDCT-A before and after stent-graft implantation were included. Based on the CT datasets, three-dimensional grid-based models of AAA were built. The minimal size of tetrahedrons was determined for grid-independence simulation. The CFD program was validated by comparing the calculated flow with an experimentally generated flow in an identical, anatomically correct silicon model of an AAA. Based on the results, pulsatile flow was simulated. A laminar, incompressible flow-based inlet condition, zero traction-force outlet boundary, and a no-slip wall boundary condition was applied. The measured flow volume and visualized flow pattern, wall pressure, and wall shear stress before and after stent-graft implantation were compared. The experimentally and numerically generated streamlines are highly congruent. After stenting, the simulation shows a reduction of wall pressure and wall shear stress and a more equal flow through both external iliac arteries after stenting. The postimplantation flow pattern is characterized by a reduction of turbulences. New areas of high pressure and shear stress appear at the stent bifurcation and docking area. CFD is a versatile and noninvasive tool to demonstrate changes of flow rate and flow pattern caused by stent-graft implantation. The desired effect and possible complications of a stent-graft implantation can be visualized. CFD is a highly promising technique and improves our understanding of the local structural and fluid dynamic conditions for abdominal aortic stent placement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.