Abstract

The blended wing body aircraft has aroused considerable interest as a potential candidate for future large subsonic transport air vehicles. In this paper, we present the results of one- and multipoint multiconstrained optimization of a blended wing body configuration for minimum total drag. The optimization technique includes a new strategy for efficient handling of nonlinear constraints in the framework of genetic algorithms, scanning of the optimization search space by a combination of full Navier-Stokes computations with reduced-order methods and multilevel parallelization of the whole computational framework. The assessment of the results shows that the proposed technology allows the design of feasible aerodynamic shapes that possess a low drag at cruise conditions, satisfy a large number of geometrical and aerodynamic constraints, and offer good off-design performance in markedly different flight conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call