Abstract
Fluid catalytic cracking (FCC) is an important process for the conversion of gas oil to gasoline. The paper is an attempt to model the phenomenon theoretically; using commercial computational fluid dynamics (CFD) software and 3-lump kinetic model. Geometry, boundary conditions and dimensions of industrial riser for catalytic cracking unit is conferred for 2D simulation using commercial CFD code. Continuity, momentum, energy and species transport equations, applicable to two phase solid and gas flow, are used to simulate the physical phenomenon efficiently. This paper uses the granular Eulerian multiphase model with k–ε turbulence and species transport. Time accurate transient problem is solved with the prediction of mass fraction profiles of gas oil, gasoline, light gas and coke. The output curves demonstrate the mass fraction and distribution of temperature in both phases. At the end comparison of the computational results with other computational and experimental data available in literature is also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.