Abstract

This paper investigates the deposition of micro-particles in two-dimensional turbulent channel flows by using a developed computational fluid dynamics (CFD) model. The Reynolds stress model (RSM) and the Lagrangian particle tracking method were employed to predict the turbulent air flow and reveal the particle physical behaviours, respectively. The near wall fluctuating velocity was corrected with a damping function. Turbulent dispersion of the particles was taken into account by adopting the discrete random walk model. Deposition velocities of particles with the sizes from 1 to 50 µm were calculated. The simulation results agreed well with available experimental data and the accuracy of this model was evaluated. The influences of Saffman lift force, particle–wall boundary condition, particle density and gravity force on the particle deposition velocity were investigated respectively by using the developed model. The results of present work could be helpful in simulating particle-gas flow in industrial and environmental applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.