Abstract

This paper presents a computational investigation of the wake of the MEXICO rotor. The compressible multi-block solver of Liverpool University was employed, using a low-Mach scheme to account for the low-speed flow near the blade and in the wake. In this study, computations at wind speeds of 10, 15 and 24 m s − 1 were performed, and the three components of the velocity were compared against experimental data around the rotor blade up to one and a half rotor diameters downstream. Overall, fair agreement was obtained with the computational fluid dynamics showing good vortex conservation near the blade. Vorticity values revealed discontinuities in the wake at approximately 70%R, where two different aerofoils with different zero-lift angles are blended. The results suggest that all-Mach schemes for compressible computational fluid dynamics methods can deliver good performance and accuracy over all wind speeds for flows around wind turbines, without the need to switch between incompressible and compressible flow methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call