Abstract
Amid all convective heat transfer augmentation methods employing single phase, jet impingement heat transfer delivers significantly higher coefficient of local heat transfer. The arrangement leading to nine jets in square array has been used to cool a plate maintained at constant heat flux. Numerical study has been carried out using RANS-based turbulence modeling in commercial CFD Fluent software. The turbulent models used for the study are three different “k-ε” models (STD, RNG, and realizable) and SST “k-ω” model. The numerical simulation output is equated with the experimental results to find out the most accurate turbulence model. The impact of variation of Reynolds number, inter-jet spacing, and separation distance has been considered for the geometry considered. These parameters affect the coefficient of heat transfer, temperature, and turbulent kinetic energy related to flow. The local “h” values have been noticed to decline with the rise in separation distance “H/D.” The SST “k-ω” model has been noticed to be in maximum agreement with the experimental results. The average value of heat transfer coefficient “h” reduces from 210 to 193 W/m2K with increase in “H/D” from 6 to 10 at “Re” = 9000 and S/D of 3. As per numerical results, inter-jet spacing “S/D” of 3 has been determined to be the most optimum value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.