Abstract

The computational fluid dynamics (CFD) simulation of the packed bed reactor (PBR) was carried out using ANSYS Fluent software. The various process parameters, such as inlet concentration of 4-chlorophenol (4-CP), flow rate, bed height, and porosity, were optimized to predict maximum biodegradation of 4-CP in immobilized catalyzed PBR. The geometrical mesh of the PBR was constructed using Gambit software, and a mesh size of 236995 was selected from the grid-independent study. A laminar flow model was used to understand the hydrodynamics as well as concentration profile of 4-CP inside the PBR using Fluent software. Through CFD, the effect of the flow rate, inlet concentration, and the bed height and porosity of the immobilized catalyst bed on the static pressure, mass imbalance, velocity, and stress-strain field inside the PBR was visualized. CFD simulation study predicted that maximum biodegradation of 4-CP was found in the presence of 500 mg/L of inlet concentration of 4-CP, 4 mL/min of flow rate, 18 cm of bed height and 0.375 of porosity. An experimental study was conducted for wastewater flow through the <i>B. subtilis MF447840.1</i> immobilized catalyzed PBR to remove the 4-CP in the laminar flow region. It was evident that CFD simulated results agreed well with experimental values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call