Abstract
Purpose This study aims to simulate the influence of surface texturing produced via turning process toward pressure distribution and load capacity generation using computational fluid dynamics (CFD). Design/methodology/approach The dimple geometry was obtained via turning process, to be used for future application on piston skirt surfaces. Two cases were studied: a preliminary study using single periodic dimple assuming linear dimple distribution and an application study using multiple periodic dimples to address actual dimple orientation following the turning process. Findings For the first case, the dimple was proven to generate load capacity with regard to untextured surface, owing to the asymmetric pressure distribution. Increasing the Reynolds number, dimple width and dimple depth was found to increase load capacity. For the second case, although load capacity increases via surface texturing, the value was 97.4 per cent lower relative to the first case. This confirmed the importance of doing multiple dimple simulations for real applications to achieve more realistic and accurate results. Originality/value A new concept of dimple fabrication using a low-cost turning process has been developed, with a potential to increase the tribological performance under hydrodynamic lubrication. Previous CFD simulations to simulate these benefits have been done using a single periodic dimple, assuming equal distribution array between dimples. However, due to the different orientations present for dimples produced using turning process, a single periodic dimple simulation may not be accurate, and instead, multiple dimple simulation is required. Therefore, present research was conducted to compare the results between these two cases and to ensure the accuracy of CFD simulation for this type of dimple.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.