Abstract

AbstractThe design of Ranque–Hilsch vortex tube (RHVT) seems to be interesting for refrigeration and air conditioning purposes in industry. Improving thermal efficiency of the vortex tubes could increase the operability of these innovative facilities for a wider heat and cooling demand to this end; it is of an interest to understand the physical phenomena of thermal and flow patterns inside a vortex tube. In this work, the flow phenomena and the thermal energy transfer in RHVT are studied for three RHVT: straight, divergent, and convergent vortex tubes. A three-dimensional numerical analysis of swirling or vortex flow is performed, verified, and validated against previous experimental and numerical data reported in literature. The flow field and the temperature separation inside an RHVT for different configuration of straight, five angles of divergent hot tube (1 deg, 2 deg, 3 deg, 4 deg, and 6 deg) and five angle of convergent hot tube (0.5 deg, 0.8 deg, 1 deg, 1.5 deg, and 2 deg) are investigated. The thermal performance for all investigated RHVTs configuration is determined and quantitatively assessed via visualizing the stream lines for all three scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call