Abstract

To effectively use a passive sampler for monitoring trace contaminants in the gas-phase, its sampling characteristics as a function of ambient wind conditions must be known. In this study two commonly used passive samplers were evaluated using computational fluid dynamics. Contaminant uptake by the polyurethane foam (PUF) was modeled using a species transport model. The external–internal flow interactions in the sampler were characterized, and the uptake rates of contaminant species were quantified. The simulations show that flow fields in the samplers have strong velocity gradients, and single-point velocity measurements do not capture flow interactions accurately. Sampling rates calculated for a PUF in freestream are in good agreement with sampling rates for PUFs in the passive samplers studied for the same average velocity over the PUF. The calculated sampling rates are in general agreement with those obtained experimentally by other researchers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.