Abstract

A computational fluid dynamic model that couples the fluid dynamics with various processes involving precursor droplets and product particles during the flame spray pyrolysis (FSP) synthesis of silica nanopowder from volatile precursors is presented. The synthesis of silica nanopowder from tetraethylorthosilicate and tetramethylorthosilicate in bench- and pilot-scale FSP reactors, with the ultimate purpose of industrial-scale production, was simulated. The transport and evaporation of liquid droplets are simulated from the Lagrangian viewpoint. The quadrature method of moments is used to solve the population balance equation for particles undergoing homogeneous nucleation and Brownian collision. The nucleation rate is computed based on the rates of thermal decomposition and oxidation of the precursor with no adjustable parameters. The computed results show that the model is capable of reproducing the magnitude as well as the variations of the average particle diameter with different experimental conditions using a single value of the collision efficiency factor α for a given reactor size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.