Abstract

Abstract Thermal hydraulic studies have been carried out to understand temperature dilution suffered by core-temperature monitoring system of a sodium cooled fast reactor. The three-dimensional computational model is validated against experimental results of a water model. Jet mixing phenomenon as predicted by different turbulence models is compared and RNG k–ɛ model is found to be better than other models. A comprehensive parametric study considering: (i) effects of construction/manufacturing tolerances on thermocouple positions with respect to subassembly positions, (ii) thermal/irradiation bowing of subassemblies, and (iii) changes in core power profile during reactor operation cycles has been carried out. The studies indicate the maximum possible dilution in fuel and blanket subassemblies to be 2.63 K and 46.84 K, respectively. Shifting of thermocouple positions radially outward by 20 mm with respect to subassembly centers leads to an overall improvement in accuracy of thermocouple readings. It is also seen that subassembly blockage that leads to 7% flow reduction in fuel subassembly and 12% flow reduction in blanket subassembly can be detected effectively by the core-temperature monitoring system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.