Abstract
Background: We aimed to verify the accuracy of the Computational Fluid Dynamics (CFD) algorithm for blood flow reconstruction for type IIIb aortic dissection (TBAD) before and after thoracic endovascular aortic repair (TEVAR). Methods: We made 3D models of the aorta and its branches using pre- and post-operative CT data from five patients treated for TBAD. The CFD technique was used to quantify the displacement forces acting on the aortic wall in the areas of endograft, mass flow rate/velocity and wall shear stress (WSS). Calculated results were verified with ultrasonography (USG-Doppler) data. Results: CFD results indicated that the TEVAR procedure caused a 7-fold improvement in overall blood flow through the aorta (p = 0.0001), which is in line with USG-Doppler data. A comparison of CFD results and USG-Doppler data indicated no significant change in blood flow through the analysed arteries. CFD also showed a significant increase in flow rate for thoracic trunk and renal arteries, which was in accordance with USG-Doppler data (accuracy 90% and 99.9%). Moreover, we observed a significant decrease in WSS values within the whole aorta after TEVAR compared to pre-TEVAR (1.34 ± 0.20 Pa vs. 3.80 ± 0.59 Pa, respectively, p = 0.0001). This decrease was shown by a significant reduction in WSS and WSS contours in the thoracic aorta (from 3.10 ± 0.27 Pa to 1.34 ± 0.11Pa, p = 0.043) and renal arteries (from 4.40 ± 0.25 Pa to 1.50 ± 0.22 Pa p = 0.043). Conclusions: Post-operative remodelling of the aorta after TEVAR for TBAD improved hemodynamic patterns reflected by flow, velocity and WSS with an accuracy of 99%.
Highlights
Aortic diseases represent a clinical relevant problem characterised by a growing annual incidence [1]
Computational Fluid Dynamics (CFD) results indicated a 7-fold increase in blood flow through the true lumen after thoracic endovascular aortic repair (TEVAR) compared to pre-TEVAR
Calculated results were verified with USG-Doppler data, where an 8-fold increase in blood flow through the true lumen was noticed after TEVAR compared to pre-TEVAR (64.81 ± 0.89 mL/s and 8.07 ± 1.54 mL/s, respectively, p < 0.0001; Table 2)
Summary
Aortic diseases represent a clinical relevant problem characterised by a growing annual incidence [1] Amongst these diseases, acute dissection, with tear formation in the inner lining of the aorta, is one of the worst cardiovascular emergencies, associated with considerable morbidity and mortality [2,3,4]. Results: CFD results indicated that the TEVAR procedure caused a 7-fold improvement in overall blood flow through the aorta (p = 0.0001), which is in line with USG-Doppler data. A comparison of CFD results and USG-Doppler data indicated no significant change in blood flow through the analysed arteries. CFD showed a significant increase in flow rate for thoracic trunk and renal arteries, which was in accordance with USG-Doppler data (accuracy 90% and 99.9%)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.