Abstract

Computational fluid and particle dynamics simulations (CFPD) are of paramount importance for studying and improving drug effectiveness. Computational requirements of CFPD codes involves high-performance computing (HPC) resources. For these reasons we introduce and evaluate in this paper system software techniques for improving performance and tolerate load imbalance on a state-of-the-art production CFPD code. We demonstrate benefits of these techniques on both Intel- and Arm-based HPC clusters showing the importance of using mechanisms applied at runtime to improve the performance independently of the underlying architecture. We run a real CFPD simulation of particle tracking on the human respiratory system, showing performance improvements of up to 2X, keeping the computational resources constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.