Abstract

Spherical t-designs provide quadrature rules for the sphere which are exact for polynomials up to degree t. In this paper, we propose a computational algorithm based on interval arithmetic which, for given t, upon successful completion will have proved the existence of a t-design with (t + 1)2 nodes on the unit sphere $${S^2 \subset \mathbb{R}^3}$$ and will have computed narrow interval enclosures which are known to contain these nodes with mathematical certainty. Since there is no theoretical result which proves the existence of a t-design with (t + 1)2 nodes for arbitrary t, our method contributes to the theory because it was tested successfully for t = 1, 2, . . . , 100. The t-design is usually not unique; our method aims at finding a well-conditioned one. The method relies on computing an interval enclosure for the zero of a highly nonlinear system of dimension (t + 1)2. We therefore develop several special approaches which allow us to use interval arithmetic efficiently in this particular situation. The computations were all done using the MATLAB toolbox INTLAB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call