Abstract
The challenging task of bringing together the advanced computational models (with high accuracy) with reasonable computational time for the practical simulation of industrial process applications has promoted the introduction of innovative numerical methods in recent decades. The time and efforts associated with the accurate numerical simulations of manufacturing processes and the sophisticated multiphysical and multiscale nature of these processes have historically been challenging for mainstream industrial numerical tools. In particular, the numerical simulations of industrial continuous and semicontinuous casting processes for light metal alloys have broadly been reinvigorated to investigate the optimization of casting processes. The development of advanced numerical techniques (e.g., multiscale/physical, finite zoning, and evolving domain techniques) for industrial process simulations including the transient melt flow, heat transfer, and evolution of stress/strain and damage during continuous casting processes have endeavored many new opportunities. However, smarter and broader improvements are needed to capture the underlying physical/chemical phenomena including multiscale/physical transient fluid-thermal-mechanical coupling and dynamic heat-transfer changes during these processes. Within this framework, the cooling system including its fluid flow and its characteristic heat transfer has to be modelled. In the research work herein, numerical studies of a novel transient evolving technique including the thermal-mechanical phenomena and Heat Transfer Coefficient (HTC) estimation using empirical and reverse analyses are presented. The phase change modeling during casting process including liquid/solid interface and also the implementation of dynamic HTC curves are also considered. One of the main contributions of this paper is to show the applicability and reliability of the newly developed evolving numerical simulation approach for in-depth investigations of continuous casting processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.