Abstract

We have adopted an ensemble Monte Carlo simulation method to systematically verify two physical driving mechanisms responsible for overcharging which refers to the adsorption of an effective charge onto a like-charged planar surface around the point of zero charge within the primitive model of mixed electrolytes with varying salt concentrations. One is electrostatic in character dominated by dielectric images and the other is purely entropic in origin by ionic size asymmetry effects, of which the former has never been reported both theoretically and experimentally and the latter could be interpreted satisfactorily in terms of available theoretical approaches. The electrostatically driven mechanism is found to critically depend on the ionic sizes while the entropically driven mechanism occurs with almost the same efficiency in a relative wide range of surface charge density. Depending on the delicate interplay between charge and steric correlations, the two distinct driving mechanisms may cooperatively give rise to a more pronounced overcharging process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.