Abstract
The electrochemical reduction of CO2 (CO2RR) to formic acid (HCOOH) is a promising approach to harness renewable energy for the production of value-added chemicals and contribute to carbon cycling. The search for cost-effective and efficient metal-free electrocatalysts is critical for realizing industrial applications. However, limited literature is available on this topic, primarily because the significant challenge of efficiently activating inert CO2 remains unresolved. In this study, we have designed and applied a novel boron carbide (B4C12) monolayered cage as an electrocatalyst for CO2RR to produce HCOOH. B4C12 exhibits exceptional electronic, dynamic, and thermodynamic stability. Through comprehensive density functional theory computations, we have observed that B4C12 rapidly and stably adsorbs CO2 in a unique η3(O, C, O)-CO2 configuration, resulting in excellent CO2RR activity with a low limiting potential (–0.38 V) and suppressed hydrogen evolution reaction. Our mechanistic investigations reveal that B4C12 donates electrons to facilitate the bending of CO2, anchoring it onto the curved surface effectively. Additionally, the C atom in the η3(O, C, O)-CO2 configuration attracts H+ + e− pairs through its active p electron, leading to the observed low limiting potential. This study not only successfully designs a novel class of metal-free electrocatalysts but also provides a promising strategy for advancing CO2RR research in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.