Abstract

The design of optimized protein antigens is a fundamental step in the development of new vaccine candidates and in the detection of therapeutic antibodies. A fundamental prerequisite is the identification of antigenic regions that are most prone to interact with antibodies, namely, B-cell epitopes. Here, we describe an efficient structure-based computational method for epitope prediction, called MLCE. In this approach, all that is required is the 3D structure of the antigen of interest. MLCE can be applied to glycosylated proteins, facilitating the identification of immunoreactive versus immune-shielding carbohydrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.