Abstract

The escalating demand for biocatalysts in pharmaceutical and biochemical applications underscores the critical imperative to enhance enzyme activity and durability under high denaturant concentrations. Nevertheless, the development of a practical computational redesign protocol for improving enzyme tolerance to denaturants is challenging due to the limitations of relying solely on model-driven approaches to adequately capture denaturant-enzyme interactions. In this study, we introduce an enzyme redesign strategy termed GRAPE_DA, which integrates multiple data-driven and model-driven computational methods to mitigate the sampling biases inherent in a single approach and comprehensively predict beneficial mutations on both the protein surface and backbone. To illustrate the methodology's effectiveness, we applied it to engineer a peptidylamidoglycolate lyase, resulting in a variant exhibiting up to a 24-fold increase in peptide C-terminal amidation activity under 2.5 M guanidine hydrochloride. We anticipate that this integrated engineering strategy will facilitate the development of enzymatic peptide synthesis and functionalization under denaturing conditions and highlight the role of engineering surface residues in governing protein stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.