Abstract
The ring-closing metathesis reaction of diene plays an important role in the construction of cyclic compounds. In this research, density functional theory (DFT) calculations were conducted to elucidate the mechanisms and origins of the selectivity of ring-closing metathesis and homometathesis. The computational results suggest that the selectivity is determined by the substrate conformation. For the ester-tethered substrate, the homometathesis is more favorable, due to the planar structure of ester facilitating the conjugative effect of the formed E-homometathesis product. For the amide-tethered substrate, the ring-closing metathesis product is the only observed product because the steric hindrance of N-substituents disfavors homometathesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.